skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peddamail, Jayavardhan Reddy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To accelerate software development, much research has been performed to help people understand and reuse the huge amount of available code resources. Two important tasks have been widely studied: code retrieval, which aims to retrieve code snippets relevant to a given natural language query from a code base, and code annotation, where the goal is to annotate a code snippet with a natural language description. Despite their advancement in recent years, the two tasks are mostly explored separately. In this work, we investigate a novel perspective of Code annotation for Code retrieval (hence called “CoaCor”), where a code annotation model is trained to generate a natural language annotation that can represent the semantic meaning of a given code snippet and can be leveraged by a code retrieval model to better distinguish relevant code snippets from others. To this end, we propose an effective framework based on reinforcement learning, which explicitly encourages the code annotation model to generate annotations that can be used for the retrieval task. Through extensive experiments, we show that code annotations generated by our framework are much more detailed and more useful for code retrieval, and they can further improve the performance of existing code retrieval models significantly. 
    more » « less